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The flow pattern of a viscous imcompressible fluid past a finite body is well known; an 
approximate solution of the related problem can, for example, be found in the book by Lan- 
dau and Lifshits [l]. Finn [2] made a rigorous and exhaustive study of plane-parallel flows. 
No fundamental difficulties arise in passing from the motion of an incompressible fluid to a 
transonic flow of a compressible gas, however the velocity field is different, when the vel- 

ocity of particles becomes critical at infinity. 
The pattern of a sonic flow past a body of circular cross-section was investigated in pa- 

per [3]. This paper deals with perturbations associated with the creation of lift acting on an 

arbitrary body in a three-dimensional flow. When solving this problem it is necessary to con- 
sider not only the external stream, but also the laminar vortex trail because of the velocity 

vector transverse components becoming infinitely great, if functions defining these are for- 
mally extended into the trail area. This difficulty arises in investigations of three-dimen- 
sional flows only. The solution defining perturbation damping in an axisymmetric sonic 
stream of a dissipative gas has in its first approximation one singular point only, and does 
not contain any other singularities along the axis of symmetry [3]. 

The external stream pattern is essentially formed by the action of normal viscous stresses 

and the longitudinal component of the heat flux vector, while the distribution of gas para- 
meters in the laminar trail is defined by tangential stresses. The conjunction of solutions 
valid for each of these areas makes the closure of the probIem, and the determination of all 
necessary parameters possible. 

1. The laminar trail. As the initial data we select the system of continuity equa- 
tions, the Navier-Stokes and the heat transfer equations. Let x, y, and z denote the axes of 
a Cartesian coordinate system, ux, uy, and u, velocity vector components along these axes, 
p the density, p the pressure, s the specific entropy, T the temperature, h t the viscosity 
coefficient, x 2 the secondary viscosity coefficient, and k the therma conductivity. With 
these notations the Eqs, of gas motion are of the form [I] 
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Here and in the following, symbol (y, Z) indicates that equations which have been left 

out complete the projections of the full system onto the Z, y, and z axes. 
We close the above system with the following thermodynamic relationships [4] 

ds = & (dp - a2dph dT= & (xdp - a2dp) 

(1.4) 

Here V = l/p is the specific volume, u the coefficient of thermal expansion, a the 
adiabatic velocity of sound, c,, and cy the specific heats at constant pressure and cons- 
tant volume respectively. Eqs. (1.4) make the elimination from our considerations of entro- 
py and temperature possible. 

In the following we shall consider the damping of perturbations at a considerable dis- 
tance from the streamlined body. We subdivide the flow into two zones, one - the zone of 
the laminar vortex trail which extended downstream of the body in the form of a narrow 
tongue, and the second - the main (external) stream.,These zones are denoted on Fig. 1 by 

$*@ 

the numerals 1 and 2 respectively. When considering 
small perturbations, we can assume that the values 
of gas parameteis throughout the space under con- 
sideration differ but insignificantly from those in the 
stabilized and uniform free stream. We shall assume 

Fig. 1 
that the velocity of its particles coincides with the 

velocity of sound and is directed along the r-axis. 
Parameters of the medium in the unperturbed state will be denoted by an asterisk. 

In the trail downstream of tbe body the velocity field is essentially formed by the action 
of tangential viscous stresses. Phenomena in this area of space are close to those which 
occur in a boundary layer. Moreover, as was first noted by Tollmien [S], pressure variations 
may be disregarded when considering motions of an incompressible fluid, as such variations 
are negligible as compared with other gas-dynamic parameters. As the trail transverse di- 
mensions are considerably smaller than the distance between the body and the selected 

cross-section, the derivatives taken along the y and z axes must considerably exceed the 
corresponding derivatives with respect to n. 

We introduce into zone I the following dimensionless variables 

5=&d, Y = lY', 2 = lzr, v, = a* (1 + 8’71,‘) (I.51 
I I v, == a.8 vy , v, = a*dvz’, P = P, (1 + E’P’), P = P, (1 + Ep’P’) 

Here E’, in’ and A’are small numerical parameters, with E’~ < e’ by virtue of the 
assumed character of pressure variation. We select dimension I related to the trail cross- 
section as the characteristic unit of length. Formulas (1.5) do not hold for zone 2 of the ex- 
ternal stream, where the correct estimate of the normal viscous stresses, and of the x-com- 
ponent of the heat flux has a decisive influence. As was first proved by Taylor [6], similar 
factors determine the pattern of weak shock waves. 

Substituting Eqs. (1.5) into the system of Eqs. (1.1) to (1.3), we obtain three dimension- 
less coefficients, namely, two Reynolds and one P&let numbers 

N Rei ‘=p.a.llhl, NR~~’ = P.&l / A,, N,,' = P.a& lk 
computed from values of gas-dynamic functions applicable to the free sonic stream. We as- 
aume the reciprocal values of these parameters to be of the same order of magnitude, and 
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are considerably smaller than unity. When deriving approximate equations we shall retain 

in these the dominant terms only, and neglect those of a higher order of smallness. There- 
fore, we can assume that in Eqs. (1.1) to (1.3) the coefficients of viscosity x t, x 2 and of 

thermal conductivity k are constants, and equal to their respective values in the free stream. 

This remark also applies to the thermodynamic coefficients in Formulas (1.4). 
As a result of linearization of the continuity equation we obtain 

$+$o (1.7) 
. 

in which primes over all dimensionless variables have been omitted. 
Eq. (1.7) shows that in any cross-section of the vortex trail a gas behaves as an incom- 

pressible fluid. A similar result is obtained in the case of the so-called ‘slender body the- 

ory’ for any sub-, tran-, and supersonic velocities of a stream in which viscous stresses and 

molecular heat transfer are absent 171. 
In order to simplify the Navier-Stokes Eqs. (1.2) we may discard the nonlinear terms. A 

formal execution of this operation requires the existence of the following relationship be- 
tween the small parameters E’, A’ and l/N’u.f 

E’ < A’ = 1 / N’R~~ (1.8) 
which we shall assume as satisfied. We finally obtain for the components of the velocity 
vector v the classical thermal conductivity Eq. 

(I 3 
Turning to the heat influx Eq. (1.3) we find that it too yields an equation of heat con- 

ductivity 

(1 .iO) 

which is satisfied by the perturbed gas density, and the coefficient of which is the Prandtl 
number NPr’= NPe’/NRal’ computed with respect to the first Reynolds number. Thus in 
the approximation here considered the density variation is completely determined by ther- 

mal processes. 
The system of three Eqs. (1.9) may be presented in the form of a single equation satis- 

fying the perturbation velocity vector V= V toe u,,, u,) of the gas particles. We shall look 
for a solution of the latter in the form 

v = u + grad Q, (1.11) 
where the scalar function @ (2, y, z) is defined by the thermal conductivity equation 

(1.12) 

The results thus obtained will be subsequently applied to the computation of forces 
acting on the body. With this in view we subject function II&, y, z) to initial values of the 

source type 

u = c6(y)6(2) for x=0 (1.13) 
with vector c = c (c,, c,,. c ,) constant. Symbol 6( CL) denotes, as usually, the Dirac delta- 
function. The solution of the heat conductivity equation satisfying initial values (1.13) is 
well known, and can be expressed as [s] 

(1.14) 

Scalar @(LX, y, z) was introduced into representation (1.11) for the sake of satisfying the 
supplementary condition (1.7) imposed on the velocity vector transverse components. We 
have 

(1.15) 



1040 O.S. Ryzhov and E.D. Terent’cv 

The right-hand side of this equation must be equal to the derivative ;)@/a~, as other- 

wise the thermal conductivity Eq. (1.12) would not have been satisfied. At first glance the 
problem so stated is insolvable, since one and the same function @(z, y, t) is defined as 
the solution of two different equations. This is, however not so. In fact, the differentiation 
of (1.15) with respect to x yields by virtue of Eqs. (1.9): 

Integrating this relationship we obtain 

a@ dU$ au-* 
-~-- 

az = i3y az 

q.e.d. 
Eq. (1.16) is the simplest for the purpose of determination of potential @(x, y, z), which 

is to remain constant along axis y = z = 0, and vanish when y -+ooand z + co-Using Formu- 
la (1.14) for expressing derivatives guy /Jr and dir, /iir, and satisfying stipulated con- 
ditions, we readiIy find 

CD= 
CgY + CtZ 

2x cys + 2”) ! exp 
- (Y” + z”-) _ 1 

43: 3 
(1.17) 

We change over to a cylindrical system of coordinates y = r cos f). z = r sin 19. Velocity 
vector components v, and v@ are related to the Cartesian components v,, and va by Expres- 

sions vu = v,.c09t3-vL,~inE), V, = v,sinO +vucOse 
We now obtain as the result of combining Formulas (1.111, (1.14) and (1.1’7) the longi- 

tudinal component of the velocity vector 

v* = & 
[ 
% + r (cV cos 8 + cz sine) 

1 
!2 

2x @xP* (1.18) 

The second term in brackets of (1.18) may be discarded, as its order of magnitude is 
considerably smaller than that of the first term, when the considered trail area is sufficient- 
ly far removed from the body. Similarly we find 

v, = - 
c,Jcast3+c,sin9 

‘Lnr”- i exp ci 
1, 

-- 1 
1 

ug = 
cz cos 0 - cl, sin 0 

23% L 

2 

22 
exp s p +++xps-l 

>I 

(I .19) 

Here all terms are, however, of the same order of magnitude, and must be retained. With 
r +oo, i.e. at the trail external boundary, the transverse components vr and VB of the vel- 
ocity of particles tend to zero in accordance with the power law 

V,-+ 
ct/cosO+c, sine cusint3--cc,cose 

2Jlr” ’ 00 --f 23lr2 
(1.20) 

while the damping of vy proceeds exponentially, as shown by Eq. (1.18). 
The trail density variation is found from Eq. (1.10). Its solution satisfying initial con- 

ditions p== co 6 (y) 6 fz) for x= 0 may be expressed by 

SNPr -Npr’rs 
p=e - 

4nx exp 4x 
(1.21) 

Solution (1.21) should only be used when friction and thermal processes in the body 
proximity substantially affect the entropy of particles flowing through the body surface 
boundary layer. The displacement of a finite mass of gas from the accompanying wake takes 
place then. A similar phenomenon occurs in flows past highly heated bodies transmitting 
considerable amounts of heat to the external flow. In conditions usual in aerodynamic prob- 
lems concerning supersonic and transonic flows, the entropy of particles in the trail appar- 
ently differs but little from that of the free stream [9]. Hence, it can be assumed that p = 
= cP = 0. However at high supersonic velocities of flow past a body, the surface of the lat- 
ter is heated to a high temperature. 
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2. The external flow. The motion of an incompressible fluid in zone 2 is found 
by solving the Laplace equation which is satisfied by the velocity potential rl]. At subson- 
ic velocities a compressible stream behaves qualitatively as an incompressible fluid, how- 
ever the velocity field undergoes a fundamental change, when the velocity of particles be- 

comes critical at infinity. In that case it is no longer possible to consider the viscous 
stress tensor and the heat flux vector as being equal to zero. On the contrary, as was shown 
in !3], the gas motion in zone 2, at considerable distances from the body, is essentially 
determined by the action of normal viscous stresses and by heat transfer along the x-axis. 
This paper contains a generalization of the usual assumptions of the transonic flow theory; 
on the basis of these we write 

x = Lx”, y = -+ y", 
L 

z = 0” zl’, 7.7, = al (l;+ du,“) (2.1) 

v, = d’A”ap,,“, v, = E”A”aavZn, p = P. (1 + E”PV), P = P, (1 + EnP") 

where 8” and h” are numerical parameters of an order of magnitude considerably smaller 
than unity, and L is a characteristic length along the x-axis. Length L differs here from 
that selected for zone I, where it was related to a transverse dimension of the trail. As was 
shown by Taylor [S], f ormulas of the type of (2.11 define the pattern of weak shock waves. 

The Reynolds and Pdclet numbers reappear as coefficients in the initial Eqs. (I.11 to 
(1.3) when relationships (2.1) are substituted into these. As previously, we assume that the 
reciprocals of these numbers are of the same order of magnitude, and considerably smaller 
than unity. In the derivation of approximate equations we shall retain the dominant terms 
only. The derivation itself of the approximate equations will be analogous to that used in 
[3] for the analysis of an axisymmetric stream. Hence final results only will be adduced. 

The linearization of the continuity equation and the projection of the Navier-Stokes Eq. 
(1.2) onto the z-axis yield 

P= $TP=--x (2.2) 
where, as previously, primes over dimensionless parameters have been omitted. 

Taking into account Formulas (2.21 we obtain the following relationships by projecting 
the Navier-Stokes equation onto the y and z axes 

(2.3) 
Noting that equality 

av, au, _- 
az ay 

is valid for z + -00, we can derive from Eqs. (2.3) the complete condition for an unpertur- 
bed vortex-free external flow, i.e. rot V= 0, hence V= grad ‘p. 

The heat influx Eq. (1.3) requires a preliminary transformation by combining it with the 
continuity and the Navier-Stokes equations. Further to this it is essential for the derivation 
of the final relationship to establish the interdependence of the small parameters E”, A” 
ad l/NR, ” which was derived in [3] 

Here the Prandtl number is computed with respect to the combined Reynolds number 
based on the so-called ‘longitudinal viscosity’, and not to the first one. 

As a result we have 

(2.4) 

The Cartesian coordinates used so far are convenient for qualitative estimates and deri- 
vation of asymptotic equations. For zone 2, however, a simpler form of solution is obtained 
in cylindrical coordinates. For components uy 
instead of (2.3) 

and u,g of the velocity of particles we have 
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av, av, 1 av, 8% 
-=-, 

ar ax raB-az (2.5) 
and Eq. (2.4) becomes 

Eqs. (2.5) and (2.6) constitutes a closed system invariant with respect to the continuous 
two-parameter group of similarity transformations 

X-+UX, r 4 c&r e--Fe 
v, 4 a-W% 

Xl 
v, + a--C3n+1)!2~~, ve 3 ~-(37wJlzv@ 

Hence the existence for this system of self-similar solutions of the form 
(2.7) 

V, = r-"w,g, e). u, = 3^-(3~'N3w,(& Q), ve = d3n+lfbe(~, 81, E = x)"-?3 
A solution of this kind yields for a = 4/3 and v@ = ??/a@ = 0 the asymptotic laws of per- 

turbation damping in zone 2 at considerable distances from a body of revolution in a stream 
of viscous and heat conducting gas the velocity of which becomes sonic at infinity [3]. 
Formula (2.7) will obviously also define for n = 41’3 components of the particles velocity 
vector which are associated with the drag acting on a body of an arbitrary form. We shall 
find the magnitude of the divergence of gas parameters from their equilibrium values resul- 
ting from the presence of a lift acting on a body in a stream at critical velocity. 

For the formulation of the solution we shall use, as previously, Formulas (2.7) the sub- 
stitution of which into the system of.Eqs. (2.5) and (2.6) yields 

The exponent is not known a priori, it is however obvious that n > 4/3. 
These equations contain functions of two independent variables 5 and 8. In order to fur- 

ther simplify the looked for solution we expand it into a Fourier series in which the first 
harmonic terms only will be retained. This procedure is in full accord with Formulas (1.18) 

and (1.19) which, in fact, also represent first terms of a Fourier expansion of the solution 
for the accompanying trail zone. We thus have 

ut, = f (E) (Cl .sln fJ + c, cm Q, f-4- = g (E) (~1 sin 0 -t c, cos 8) 
,& = h (E) (cg sin 0 - Cl cos 6) (2.8) 
with arbitrary constants c t and c 2. 
tions f(t), g ([) and h (&: 

The following system of equations is valid for func- 

This system is equivalent to the single Eq. 

Having solved Eq. (2.9) we find functions g (c$) and h (e) from the following equalities: 

h= - i f(E)d(U (2.10) 
., 

The absolute vahre of the self-similar coordinate increases infinitely when r + 0. We 
shall write down the asymptotic expansions for the three linearly independent solutions of 

Eqs. (2.9) for \ e\ + 00. The first of these is 

f = a1 1 tF, p+l) I2 [P + =/ep (n + I) (n + 5/&)(n i_ ‘/a) e-3 -j- * . * ] (2.11) 

The second of the looked for solutions will be presented in the form 

l=oxIEl- s(n-1)‘2 II - al/% (n - l)(n - l/a)(n + l/a) E--3 In 1 rj 1 + ’ * . ] (2.12) 
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and the third linearly independent solution of Eq. (2.9) will be written thus 

f = as 1 E 13(n-1)exp (- 4/27 Ea) +. . . (2.13) 

It will be readily seen from equalities (2.7). (2.8) and (2.10) that for r + 0 and x < 0 the 
first terms of the asymtotic expansion of functions u, (x, r, 8), U, (z, r, 6) and ue(z, r, 8) 

corresponding to Formula (2.11) are 

ax = or 1 x p+l) /z r(clsinO+c2costj)+... 

2621 
Vr = - 7jg-q 1 x I-(w+l)‘a (cl sin 0 + c2 cos 0) + . . . 

2aj 
uo = zjqj 1 z I-3@+1J/2 (c:, sin 0 -- cl cos 0) + . . - 

The formula for vx (x, r, 8) remains unchanged for r -+ 0 and x > 0, while expressions of 
V, (x, r, 8) and ~0 (z, r, 8) change because of the presence of integral terms in the right- 
hand sides of equalities (2.10). We have 

3B1 

vr =-37$-- - r-(3n+1)‘3 (cl sin 0 + ca cos 0) + . . . (2.14) 

i-co 

v. = - BIr-(3n+1)/3 (Q sin 8 - cl cos 0) +. . . 
( 

Bl=+ ‘$ f KM) 
=cn 

The longitudinal component of the perturbed stream velocity computed from solution 
(2.12) tends to increase infinitely all along the z-axis as l/r, while its transverse compo- 
nents increase as l/r 2 when x < 0, and as r -( 3”+1)13 when x > 0, with Formulas (2.14) re- 
maining valid for these. As regards solution (2.13) we note that it yields expressions con- 
taining the common factor exp (- 4x 3/27r2), and is valid for all three components of the 
gas particles velocity. Therefore solution (2.13) does not hold for negative values of x, 
while, on the other hand, perturbations corresponding to positive values of x are extremely 
rapidly attenuated when r -+ 0. 

Upstream, the perturbations defined by integrals (2.9) must fade out at infinity. The area 
downstream of the body is occupied by a vortex trail, hence the two transverse components 
ur and ~0 of the external stream velocity vector will have singularities defined by Formu- 

las (1.20) when r -) 0 and z > 0. The perturbed velocity longitudinal component has no sin- 

gularities, as at the trail boundary it becomes, in accordance with equality’(I.l8), exponen- 
tially small. We note that in the solution of an axisymmetric problem of perturbations crea- 
ted by drag, the as motion outside of the trail is determined independently of the motion 
within the latter f 31. The solution of a three-dimensional problem is considerably more com- 
plicated. 

By combining the functions which define components vr and we in-, and outside of the 
vortex trail in the interval I < [<< r’/s (A’A”l/, IL ‘4) -’ (coordinate r is here dimension- 
al), we obtain first of all (3n + 1)/3 = 2, h ence n = 5/3. With this value of exponent n a sin- 
gle integration of Eq. (2.9) becomes possible 

(2.15) 

In order to satisfy the natural condition for the damping of perturbations at infinity up- 
stream of the body, the arbitrary constant in the above equation has been assumed to be 
zero. The asymptotic expansion of the first linearly independent solution of the above equa- 
tionforj4\+~iis p rovided by Formula (2.11), and for the second by (2.13). In order to 
find the explicit expression of function f(t) 
variable r~= - 4/27 4 3, and obtain 

we introduce into Eq. (2.15) a new independent 

71% + ta/* - rl) gi - "/sf = 0 
The general solution of the derived equation, presented in the standard form of confluent 

hypergeometric functions, is [lOI 

f = h Q, t4/3, 3/3; rl) + b,q=‘a CD (b/3, 413; T$ 
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There remains to be estabtished the relationship between constants 6, and 6,. To ach- 

ieve this we shall use the asymptotic presentation of confluent hypergeometric functions 

for 7 + + 00. We have 

where r( CL) is the Euler gamma-function, and G f- ‘4, - ?$;‘?7) a series expansion in recip- 
rocals of powers of 77, with G (- y, - t/3 ; q) + I when T-P +oo. To obtain a solution guaran- 

teeing the damping of perturbations in the external stream at infinity upstream of the body, 

it is necessary to set 

ba tX”- (‘/a) 

bl = - r’ (l/o) 

Formula (2.16) is now transformed into 

whence passing to the ‘?-function, first used in problems of mathematical physics by Tri- 

comi [lo!, we find 

f=------ PI’ P/s) b,yr 

3r (l/a) i 
_$ 
3 I +; ?I ) 

(2.18) 

Equalities (2.10) permit the expressions of g (6) and h (6) to be written in the form 

Using the asymptotic expansion of the y-function for large values of the argument, we 
obtain for 7 -+ + co and [+ - oo the following form of solution (2.18) 

b,E,-4+... 

and the formula defining the behavior of functions g (t) and h ([I 

$ = _ h = _ y&y,‘;” 

3 
b*[_3 + . . . 

(2.19) 

(2.20) 

The original presentation of function j(c) together with the asymptotic expressions of 
confluent hypergeometric functions in the area of negative changes of the ~~rnent, is more 

convenient for the analysis of that function for of + - 00 and [+ + oo 

(2.21) 

Functions g (6) and h ([) o b viously tend to the constant value 

when ‘7 + -ooandE++oo. 
Functions f(c), g (6) and k (5) computed for b, = 4r(1/3) [2?* 2li, r(2/3&‘, with con- 

stant B 
to (2.22 3 

obtained equaf to 0.667, are shown on Fig. 2. In accordance with Formulas (2.19) 
functions f(c) and g (6) pass through zero once, and have different signs for f+ 

-(I -co and[++ 00. The sign of function h (6) remains unchanged and is negative through- 

out the interval of change of 5. 
We shall carry out the complete conjugation of solutions related to the vortex traii and 

to the flow outside of its boundary. Components nr and ue of the basic stream velocity vec- 
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F&2 

If the gas motion in the trail downstream of the body is 
axisymmetric, then, in accordance with (1.19), we have ur = 
= vg= cv= cZ = 0. In this case the order of magnitude of the 
transverse components of the velocity vector is considerably 

smaller than that of the longitudinal one, not only in zone 2, but also in zone I. Relation- 
ship (1.7) no longer holds for the simplified continuity equation, and terms containing deri- 
vatives with respect to x must be retained in it. Exactly the same situation occurs in the 
analysis of plane parallel flows. Thus it is clear that in the case of a flow past a body of 
circular cross-section under zero angle of attack, the external stream in the approximation 
here considered is independent of the velocity field pattern in the accompanying trail. 

tar must have, as previously indicated, singularities of the 
form of (1.20). Recalling the maturer in which the dimension- 
less coordinate r was introduced into zones 1 and 2, we have 
by virtue of equalities (2.71, (2.8) and (2.22) (2.23) 

Cl = %t 02 

We note that it is’not possible to “match” the solution 
valid for the trail and that applicable outside of it for any 
arbitrary values of a f S/3, because of the four contradictory 
equalities relating constants c1 and cz to constants C, and 
ca . These two pairs of equalities are congruent for n 7 S/3 
only. 

3. Forces acting OII a body. Denoting temporarily for the sake of convenience 
the Cartesian coordinates by x = z1 , y = x2 and z = x 3, and using the customary notations 
for sums with recurring indices, we adduce the expressions of components 
sity tensor of momentum flow [I] 

31~li of the den- 

$j = p&i, + PUiUj - hl 
i 
$+2& 
i 

4 6ij 2) - 3L28ij +$ (3.4) 

Here all parameters are expressed in dimensional units of the input system, and 8~ is 
the unit vector, i.e. qr, = 
values 1, 2, 3. 

1 for i = j, and 8iI = 0 for i f i, with indices i, j, k run through 

Let us surround the stream flowing past a body by a closed surface c. The total force 
F acting on the body is equal to the integral of the densit 
taken over this surface. The components of this force are t: 

tensor of the momentum flow 
l] 

(3.2) 

The absolute value of vector do is equal to the surface element area, and is directed 
outward along a normal to the latter. When computing intepral (3.2) note must be taken of 

(3.3) 

as the quantity of gas in the volume under consideration remains constant. Condition (3.3) 
is the integral form of the continuity equation. 

We select for our investigations the volume of gas bounded by two planes x = const, one 
of which denoted by c t, 
denoted by xc,, 

is located sufficiently far upstream from the body, and the other, 
downstream of it. Let a cylindrical surface xc, of radius R, symmetric with 

respect to the x-axis, envelop the space comprised by these two planes; this radius will be 
subsequently extended to infinity. The area of the vortex trail cross-section at plane 8, 
will be denoted by S. 

The primary object of this paper is the computation of the lift and lateral force denoted 
respectively by F 

r 
aud F, . In addition to this we shall derive the expression for the drag 

F “. althou& the aws of damping of perturbations generated bv it are alreadv known.(*) We 

*) The derivation of the formula for F, in [31 is erroneous. 
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proceed with the determination of these by dividing integral (3.2) into two terms, one of 
which denoted by F*‘represents that part of forces which is obtained by the integration of 

tensor ZCij over the trail area, and the other denoted by F, ” contributed by the integration 
of functions defining the external stream. Obviously, Ft = F’ ‘+ Fi ‘: 

In the computation of F, ‘in Formula (3.1) it will be sufficient to take into account only. 
the terms related to the mechanical displacement of the various gas masses from one place 

to another, together with preesure forces acting there. We substitute into the right-hand side 

of equality (3.2) the dimensionless variables (1.5), retaining the primes over these in order 

to avoid any subsequent confusion. After some simple computations we find the magnitude 

F,’ = - p,aJW $ v,‘dy’dz’ (3.4) 
II 
s 

which is a component of drag. Noting that function ux‘(z’, r’) decreases exponentially when 
r’+ 00, we can, in the approximation considered here, extend the integration of (3.4) over 
the whole plane 2,. With the use of Formula (1.18) we obtain 

F,’ = - p,as212c,d (3.5) 
For componqnts FY ‘ and F, ‘ of the lift and lateral force respectively the following rela- 

tionships are true 

Reverting to equalities (1.19) we note that the integration of terms dependent on grad@ 
as defined by (1.11) for the perturbed velocity, yields zero. Only terms containing U(x’, y’, 
z’) in (1.11) yield finite contributions to F,, ’ and F,‘. Substituting integration over c a for 

integration over S, and neglecting the ensuing error, we obtain 

F,’ = - plae212cu8r, F,’ = - pqae2Pczsr (3.6) 

By virtue of equality (2.23) constant c t is proportional to constant cz , and constant c2 
to cy . All of these constants vanish in the absence of lift and lateral forces, and in that 
case both, the motion of gas in the vortex trail and the flow in the area outside of the latter 

are axisymmetric. The axisymmetric part of perturbations is due to drag only. When integra- 

ting external flow functions over the two end plan& x = const for the purpose of drag cal- 

culation, it is necessary to take into account in Formula (3.1) not only the “ideal” part, 

but also the terme contributed by viscous friction. For the determination of this force the 

first approximation theory is not sufficient, and it is necessary to know the corrections de- 

rived in the second approximation theory. Its simplifaction is based on the previously noted 

fact that gas parameters in zone 2 are found by solving the axisymmetric problem, and de- 

pend on the z, and r coordinates only, while d,g = r? /de = 0. 
According to the theory developed in [12] perturbations are presented in the form 

2’ x 1, z.z Z’ slG + Pvx2” j ’ * .) 
p“ = plv .+ @p,” /_ . . . , (3.7) 

where 8” is a small supplementary parameter, a,nP fppctions p ” (z 
are given in terms of vX ;‘(z , r’ ) and vXz”(z , r ) by equa Itlea I* - 

“, r’? and p2” (x”, r’q 

(3.8) 

Function vx t “(x”, r”) is, of course, different from that considered in the preceding 

Section, where it is related to forces acting in the yr-plane. This function was defined in 
[3]. A more precise definition of gas characteristics in the area of perturbed motion makes 
it possihle to establish the relationship between the small parameters [ll] 
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1 il ~ $y’ie pmJ!? /l-%, 
~vm? 

(3.9j 

In spite of the use of the second approximation theory, the contribution of nonlinear 
terms to the value of tensor nij may be neglected. 

We shall substitute dimensionless variables (2.1) into the right-hand side of equality 
(3.2). First of all, we shall demonstrate with the use of Formulas (3.7) to (3.9) that the 
term F, “vanishes in the expression of drag. It can be readily ascertained that the integral 
in the expression of F, “taken over the cylindrical surface 2, tends to vanish when its 
radius R + 00. We note at once that the integrals over &-, appearing in the formulas for the 
lift and lateral force also tend to vanish when R +,oo. In the summation in tlrr of terms 

associated with pressure and velocity perturbations the coefficient in front of function 
,, *, 

ux2 (x , r”) of the second approximation becomes zero, hence 

Taking into account in this formula the relationship between the small parameters 8” 
and l/NR,, ‘, we conclude that the difference of the two terms in brackets is identically 
zero. The validity of equality F, “= 0 has thus been proved. 

That part of the lift FY “which results from the integration of the external stream func- 
tions may be presented in the form 

F,” = p,a*2L2 _& ( jj - lj ) v,"dfdZ" 

c 1 C_-S 
In order to aimplif 

E 
computations we substitute integration over the whole plane z 2 for 

integration over area p - S, It can be readily shown that the resulting error will be within 
the limits of the approximation considered. After some simple transformations based on 
equality 

we find 

where constant 4 is given by Formula (2.22). 
I 

By definition d = F, ‘+ F, “. By virtue of Ij; “= 0 equality (3.5) yields the full magni- 
tude of the drag acting on a body in a stream of dissipative gas having its critical velocity 
at infinity. The origin of this force is explained by the same reason as in the case of an 
incompressible fluid, and is related to the displacement of the x-component of momentum 
from the trail downstream of the body. Although the damping of perturbations in the external 

zone is sufficiently slow, their total contribution is zero. At sonic velocity of flow past a 
body the wave drag is absent, it occurs at purely supersonic flight velocities only [l,and 71, 

The exactly opposite is true for the lift and lateral force. In fact, in accordance with (3.10) 
both F,, “and F,” differ from zero. The generation of the lift and lateral force is, therefore, 
the result of the y, and z components of momentum being carried into infinity not only from 
the vortex trail, but also by the system of waves radiating from the body and spreading thro- 

ugh the external stream. A part of these forces is of the wave pattern at the critical velo- 
city of the free stream. 

The relationship (2.23) between constants c t and cs , and c and cY must be taken into 
account in the summation of the right-hand sides of Formulas 3.6) and (3.10). Expressing (’ 
parameter A" in terms of err as defined by the first of Eqs. (3.9) we obtain 
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There remains to determine the interdependence of parameters E’ and &” which chsrac- 

terize the magnitude of perturbations in-, and outside of the accompanying trail. The sim- 
pIest way of achieving this is to resort to the continuity equation in its integral form (3.3). 

We fix radius R of the cylindrical surface c, at a constant value, and move plane 2 t up- 

stream into infinity. We take into account that in accordance with (1.211 a finite mass of 

gas defined by constant co may be displaced from the trail. Finally, we obtain 

with function [3j 

In our computations coefficient b, = - 2.2 ‘j3r(2/3) [3r(1/3)]” was assumed, and 
the value of B, = 2.002 was obtained. 

It will be seen from the first of Formulas (3.12) that the ratio of small parameters E”/E’ 

is of the order of unity. This formula indicates moreover that the magnitude of perturbations 

in the external stream may vary due to heat exchange between the body and ambient gas. 

Because of molecular heat transfer from the body to the boundary layer a finite mass of the 

medium is displaced from the latter when cp < 0. This process is in no way related to ener 

gy dissipation on account of viscous stresses. On the contrary, when co> 0, a certain 
amount of gas is “drawn in” from the external stream into the trail downstream of the body. 
Constant c, is always negative because velocity vx ‘in the vortex trail must be negative 

In the approximation here considered the effect of drag does not, in general, produce exter- 

nal flow perturbations when cp= - c,. Such phenomenon is not possible in an incompres- 

sible fluid, as there the ‘deficiency’ in the trail cross-section is proportional to the mag- 
nitude of the z-component of impulse displaced from that area [l]. For a compressible me- 

dium the above phenomenon is of a general character, and is present at any flight velocity. 

An appreciable effect will, however, be obtained only in the presence of a sufficiently in- 

tensive heat exchange in the boundary layer. 

The derivation of results presented here could have been shortened, if in all computa- 

tions radius R of the cylindrical surface z, was held constant, and plane 2, moved into 

infinity, as was done in the analysis of the continuity Eq. (3.3). Such a method has the ad- 

vantage of avoiding the necessity of resorting to the second approximation theory. However 

in all experimental investigations involving trail traversing which were originated by Betz 

[12], two control surfaces z = const are used. It was, therefore, thought expedient to show 

explicitly that in spite of the relatively considerable magnitude of perturbations in the ex- 

ternal stream, their effect on the drag of a body is nil, even at the critical velocity of part- 

icles at infinity. 
In conclusion we shall compare the results obtained here with those established in pa- 

per (31, When a flow is axisymmetric, or a body is acted upon by drag only, then the differ- 

ence M - 1 fJf is the Mach number) decreases proportionally to r-4/3, and the angle between 

the velocity vector and the z-axis proportionally to rs5j3, when receding into infinity along 

line [= const. The presence of lift and lateral forces generates additional perturbations 

for which, under similar conditions we have in the external stream 1 M - 11 - ~r*~/~ and 

0-r -2. Thus the drag of a body gives rise to considerably greater perturbations in a uni- 

form flow of gas than the perturbations generated by forces acting in the transverse plane, 

when motions at critical velocities are considered. 
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